

European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome COST Action - CA15111

8 February 2018

Prof. Carmen Scheibenbogen & Dr. Franziska Sotzny

Institute for Medical Immunology, Charité Universitätsmedizin

CHARITÉ universitätsmedizin berlin

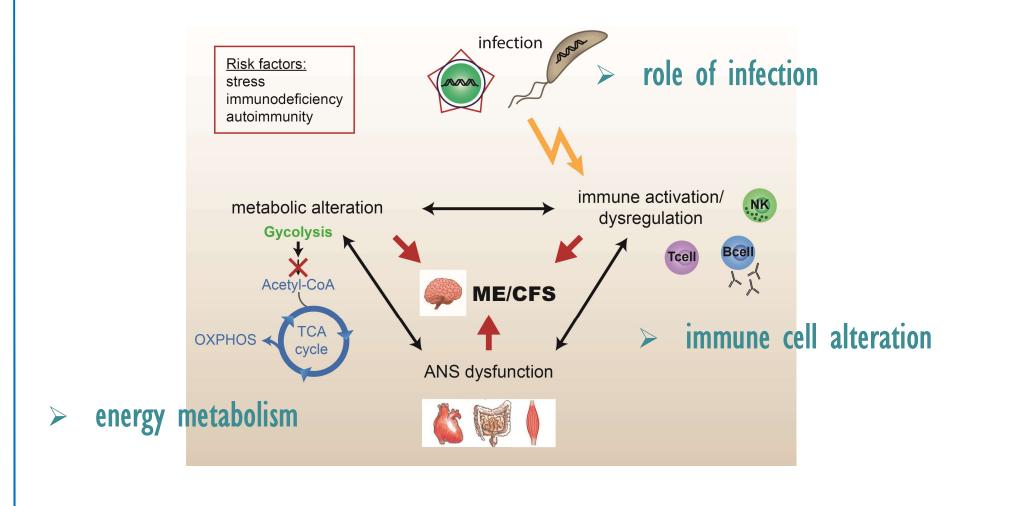
3. Continuation of Work Group No 2 meeting

Presentation of review projects – Autoimmunity

Dr. Franziska Sotzny

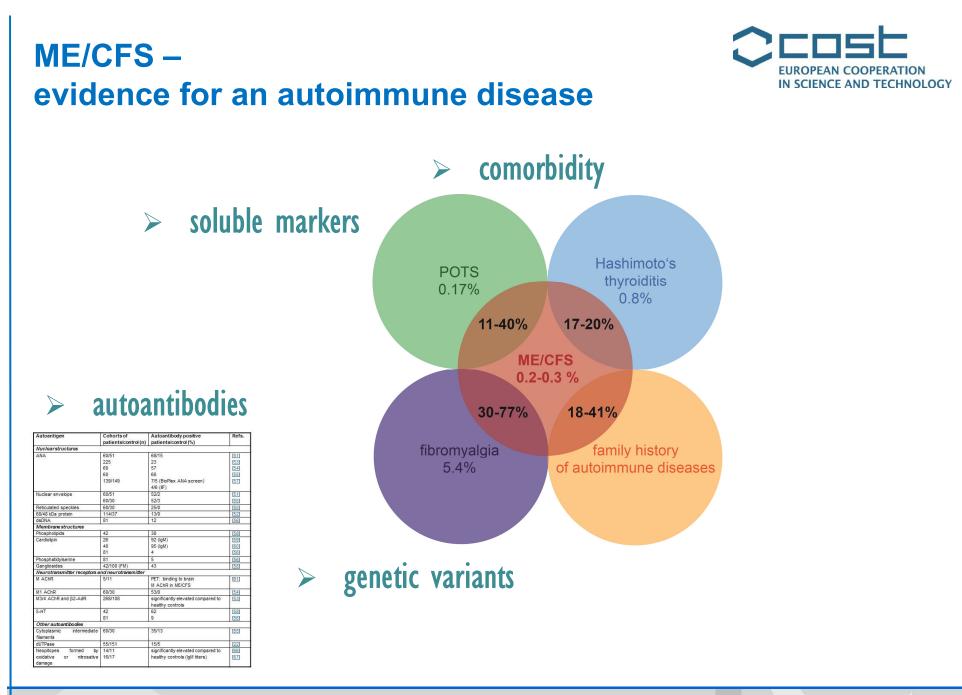
Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome – evidence for an autoimmune disease

Autoimmunity Reviews Co-Editors-in-Chief: Y. Shoenfeld, M.E. Gershwin, MD


Impact Factor: 8.961

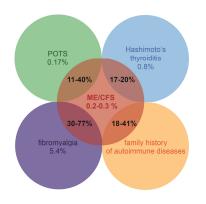
Authors: Franziska Sotzny, Julià Blanco, Enrica Capelli, Jesús Castro-Marrero, Sophie Steiner, Modra Murovska, Carmen Scheibenbogen

ME/CFS – evidence for an autoimmune disease



> autoantiboodiesle markers

Autoantigen	Cohortsof	Autoantibody positive	Refs.
	patients/control (n)	patients/control (%)	
Nuclearstructures			124
ANA	60/51	68/15	[51]
	225	23	[53]
	60	57	[54]
	60	68	[55]
	139/149	7/5 (BioPlex ANA screen)	[57]
		4/6 (IIF)	
Nuclear envelope	60/51	52/2	[51]
	60/30	52/3	[55]
Reticulated speckles	60/30	25/0	[55]
68/48 kDa protein	114/37	13/0	[52]
dsDNA	81	12	[56]
Membrane structures			THE STREET
Phospholipids	42	38	[58]
Cardiolipin	26	92 (lgM)	[59]
	40	95 (lgM)	[60]
	81	4	[56]
Phosphatidylserine	81	5	[56]
Gangliosides	42/100 (FM)	43	[58]
Neurotransmitter receptors a	nd neurotransmitter		
M AChR	5/11	PET: binding to brain M AChR in ME/CFS	[61]
M1 AChR	60/30	53/0	[54]
M3/4 AChR and β2-AdR	268/108	significantly elevated compared to healthy controls	[53]
5-HT	42	62	[58]
	81	9	[56]
Other autoantibodies			100
Cytoplasmic intermediate filaments	60/30	35/13	[55]
dUTPase	55/151	15/5	[22]
Neopitopes formed by	14/11	significantly elevated compared to	[66]
oxidative or nitrosative damage	16/17	healthy controls (IgM titers)	[67]



> comorbidity

> soluble markers

> autoantibodies

Autoantigen	Cohorts of patients/control (n)	Autoantibody positive patients/control (%)	Refs
Nuclearstructures			1
ANA	60/51 225 60 60 139/149	68/15 23 57 68 7/5 (BioPlex ANA screen) 4/6 (IF)	(51) (53) (54) (55) (57)
Nuclear envelope	60/51 60/30	52/2 52/3	[51]
Reticulated speckles	60/30	25/0	[55]
68/48 kDa protein	114/37	13/0	[52]
dsDNA	81	12	[56]
Membrane structures		******	
Phospholipids	42	38	[58]
Cardiolipin	26 40 81	92 (IgM) 95 (IgM) 4	[59] [60] [56]
Phosphatidylserine	81	5	[56]
Gangliosides	42/100 (FM)	43	[58]
Neurotransmitter receptors a	nd neurotransmitter		1
M AChR	5/11	PET: binding to brain M AChR in ME/CFS	[61]
M1 AChR	60/30	53/0	[54]
M3/4 AChR and B2-AdR	268/108	significantly elevated compared to healthy controls	[53]
5-HT	42 81	62 9	[58] [56]
Other autoantibodies			1.2
Cytoplasmic intermediate filaments	60/30	35/13	[55]
dUTPase	55/151	15/5	[22]
Neopitopes formed by oxidative or nitrosative damage	14/11 16/17	significantly elevated compared to healthy controls (IgM titers)	[66] [67]

> genetic variants

Dosage	Study design	Patients (n)	Evaluatio n	Outcome	Refs.
Intravenous IgG	8		y .	8	2
1g/kg/m² 6x	RCT	28	FI & SR	No difference	[133]
2g/kg/m ² 3x	RCT	49	FI & SR	Follow-up m3: 43% vs. 12%	[134]
0.5g/1g/2g/kg/m ² 3x	RCT	99	FI & SR	No difference	[135]
1g/kg/m² 3x	RCT	70 (adolescents)	FI	Follow-up m6: 72% vs. 44%	[<u>136]</u>
Rituximab		-		ini -	
500 mg/m ² 2x	RCT	30	FI & SR	Improvement 67% vs. 13%	[<u>131]</u>
500 mg/m ² 6x	single arm	29	FI & SR	Improvement 62%	[<u>129]</u>
Ongoing Trials					
Cyclophosphamide (Endoxan®)					Fluge et al., unpub.
Immunoadsorption	li -				Scheibenbogen et al., unpub.

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome – evidence for an autoimmune disease

Franziska Sotzny^{**}, Julià Blanco, Enrica Capelli, Jesús Castro-Marrero, Sophie Steiner, Modra Murovska, Carmen Scheibenbogen^{*} on behalf of European Network on ME/CFS (EUROMENE)

Autoimmunity Reviews

* Carmen.Scheibenbogen@charite.de ** Franziska.Sotzny@charite.de

4. Biomarker Studies

Landscape Study and Update

Dr. Franziska Sotzny

Journal of Translational Medicine

REVIEW

Open Access

The European ME/CFS Biomarker Landscape project: an initiative of the European network EUROMENE

Carmen Scheibenbogen^{1*}¹, Helma Freitag¹, Julià Blanco^{3,4}, Enrica Capelli^{5,6}, Eliana Lacerda⁷, Jerome Authier⁸, Mira Meeus^{9,10,11}, Jesus Castro Marrero¹², Zaiga Nora-Krukle², Elisa Oltra^{13,14}, Elin Bolle Strand^{15,16} Evelina Shikova¹⁷, Slobodan Sekulic¹⁸ and Modra Murovska²

- 2012 2016
- 39 studies were identified:
 - 15 immune markers
 - 5 infection markers
 - 4 neurological markers
 - 15 metabolic markers

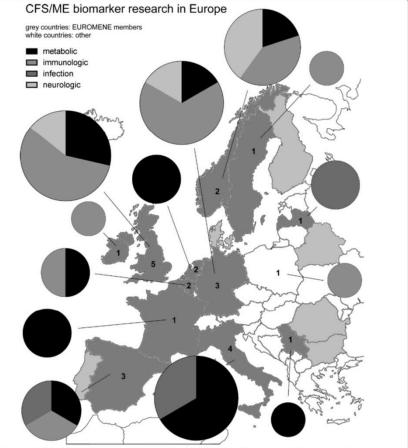


Fig. 1 Biomarker studies were categorized as metabolic, immunological, neurological or infection-associated. The data was visualized as total numbers of studies (size of cake) per category (piece of cake) from each country, and the numbers of active biomarker research groups is indicated in the countries. EUROMENE countries are indicated by grey (dark grey countries with published studies, light grey those without studies) and non-EUROMENE by white

ME/CFS Biomarker Landscape project – UPDATE

- year 2017
- worldwide
- 14 studies were identified:
 - 7 immune marker
 - 3 immune & infection marker
 - 2 immune & metabolic marker
 - 2 metabolic marker

Country	Category	Reference	
Germany	immunologic/ infection	Loebel <i>et al.</i>	
Norway	immunologic	Theorell et al.	
	immunologic	Nguyen et al. (a)	
	Immunologic/ infection	Hanevik et al.	
UK	metabolic	Tomas et al.	
Australia	immunologic	Lidbury et al.	
	immunologic	Nguyen et al. (b)	
	immunologic	Nguyen et al. (c)	
	immunologic	Broadbent et al.	
Canada	metabolic	de Vega et al.	
USA	metabolic	Germain et al.	
	immunologic	Montoya et al.	

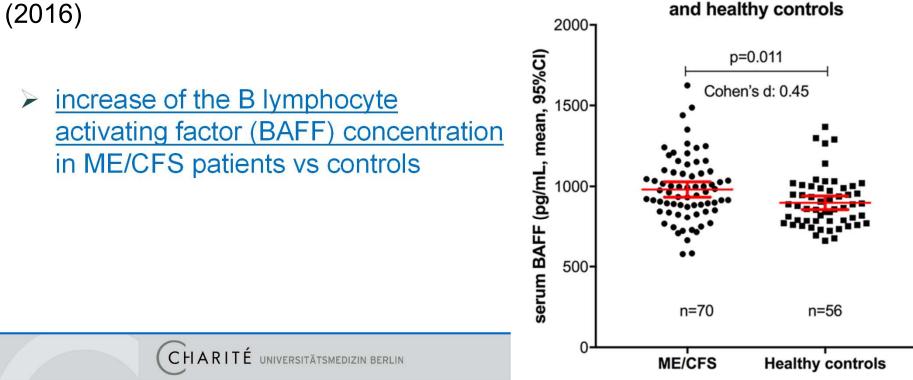
Antonia Berz

ME/CFS Biomarker Landscape project potential immune and infection biomarkers

- Ig & MBL
- neurotransmitter receptor autoantibodies
- TGFβ
- serum BAFF
- active HHV-6 & HHV-7/HHV-7 & B19 infection
- TRPM3
- Activin B
- mast cells
- EBV serology: EBNA6, dUTPase

4. Biomarker Studies

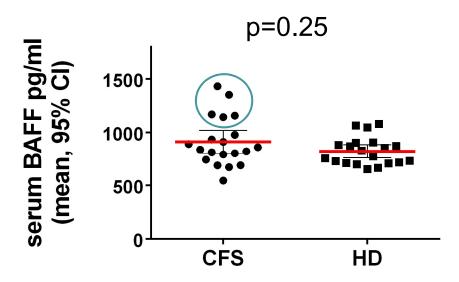
Selection and validation of selected biomarkers


- first Charité data -

Dr. Franziska Sotzny

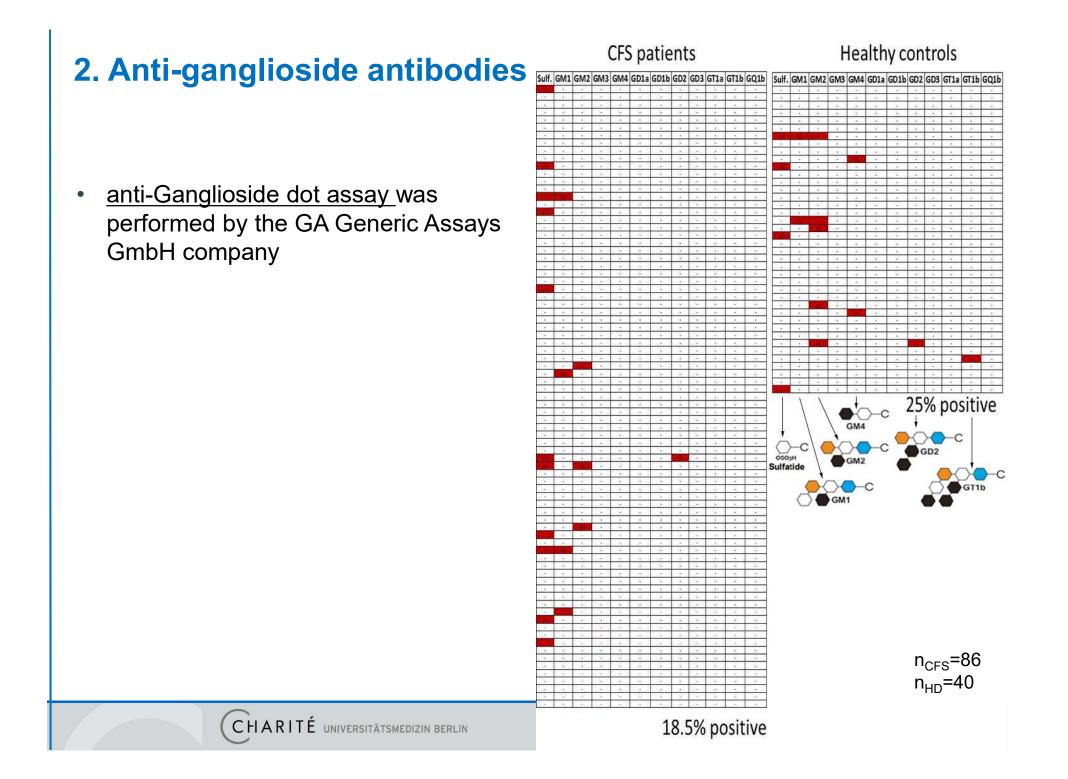
1. BAFF

Sigrid Lunde¹, Einar K. Kristoffersen^{2,3}, Dipak Sapkota^{1,4}, Kristin Risa¹, Olav Dahl^{1,3}, Ove Bruland^{1,5}, Olav Mella^{1,3}, Øystein Fluge¹*



BAFF levels in ME/CFS patients

tendency of increased BAFF levels in ME/CFS patients vs controls determined by ELISA (n_{CFS}=20, n_{HD}=20)



Mann-Whitney test, two-tailed

Klein and Berg, <u>1995</u>. **High incidence of antibodies to** 5-hydroxytryptamine, **gangliosides** and phospholipids **in patients with chronic fatigue and fibromyalgia syndrome** and their relatives: evidence for a clinical entity of both disorders. *Eur J Med Res*.

- Sera from 42 CFS patients were analysed by ELISA
- Results: **43** % of the CFS patients had antibodies to gangliosides

3. CD26

A Comparison of Immune Functionality in Viral versus Non-Viral CFS Subtypes

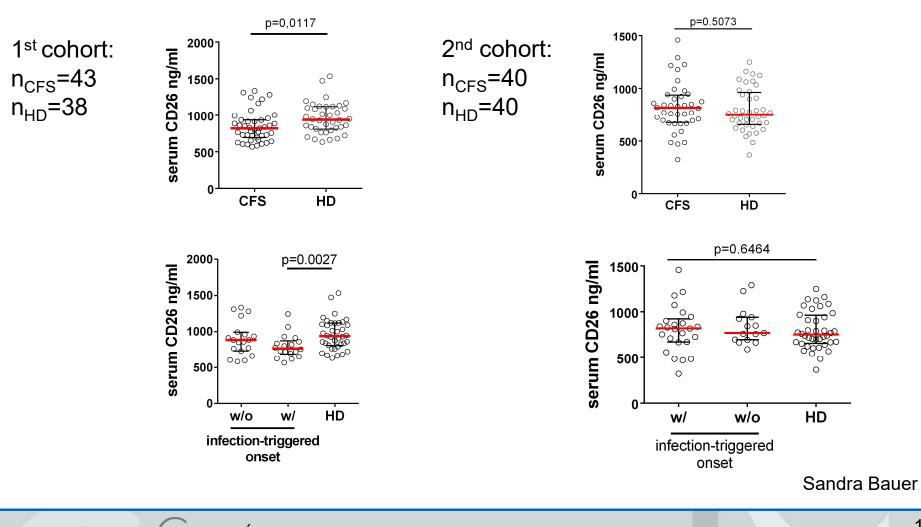
Nicole Porter^{1,*}, Athena Lerch¹, Leonard A. Jason¹, Matthew Sorenson¹, Mary Ann Fletcher², and Joshua Herrington¹ (2010)

increase of CD26+CD2+ cells in CFS patients with viral onset and increase in CD26+CD2+CD8+ cells in ME/CFS patients

Lymphocyte Marker	Non-viral (n=62) M (SD)	Viral ($n=46$) M (SD)	p	đ
CD2+ %pos	82.35 (6.98)	83.90 (5.51)		
CD2+ cells/µL	1702.24 (465.87)	1852.37 (644.16)		
CD2+ CD26+ % pos	55.36 (12.15)	60.18 (8.68) ↑	.024	-0.463
CD2+ CD26+cells/ µL	1140.24 (372.95)	1326.43 (469.89)	.029	-0.442
CD2+CD4+CD26 + %pos	41.10 (9.67)	48.08 (9.40)	.000	-0.731
CD2+CD4+CD26+ cells/ μL	846.90 (284.64)	1068.07 (423.02)	.003	-0.625
CD4+ CD26+ % pos	41.24 (9.69)	48.19 (9.34)	.000	-0.731
CD4+ CD26+ cells/µL	849.68 (285.38)	1070.37 (422.87)	.003	-0.623
CD2+CD8+CD26+ %pos	12.07 (4.73) ↑	10.49 (4.64) ↑		
CD2+CD8+CD26+ cells/µL	249.89 (118.40)	225.17 (108.77)		

3. CD26

Biomarkers in Chronic Fatigue Syndrome: Evaluation of Natural Killer Cell Function and Dipeptidyl Peptidase IV/CD26


Mary A. Fletcher^{1,2,3}*⁹, Xiao R. Zeng^{1,2}, Kevin Maher¹, Silvina Levis^{1,2}, Barry Hurwitz³, Michael Antoni³, Gordon Broderick⁴, Nancy G. Klimas^{1,2,3}⁹ (2010)

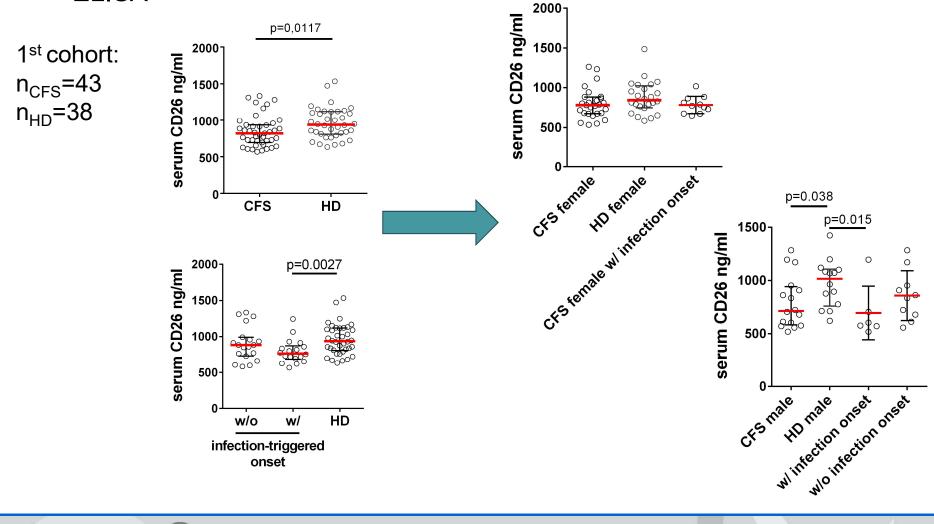
increase of CD26+CD2+ cells and simultaneously a <u>decrease in serum</u> <u>CD26</u> in ME/CFS patients vs controls

Table 1. Natural killer cell cytotoxicity and dipeptidyl peptidase IV/CD26 in chronic fatigue syndrome cases^a compared to controls^b.

Variable	Number of CFS Cases	Median (25–75 th percentile)	Number of Healthy Controls	Median (25-75 th percentile)	P
NKCC%	176	12 (8–21)	230	28 (20-37)	.000
% CD26+CD2+ Cells	75	61 (55-66)	100	52 (47-59)	.000
sCD26 in Serum (ng/ml)	73	489 (396-643)	122	671 (496-871)	.000
rMol CD26/CD2+ Cell	77	3625 (2844-4633)	102	4388 (3600-5388)	.001

<u>decrease in serum CD26</u> in ME/CFS patients vs controls determined by ELISA

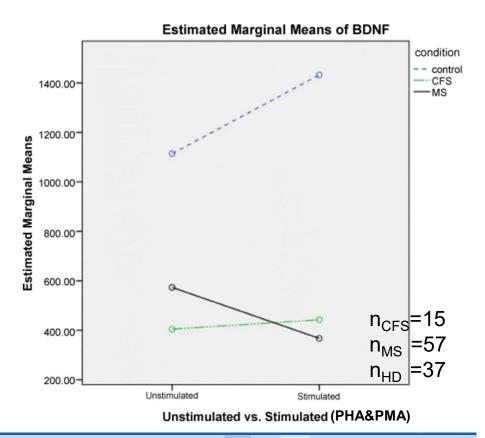
3. Serum CD26



¹⁹

<u>decrease in serum CD26</u> in ME/CFS patients vs controls determined by ELISA

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

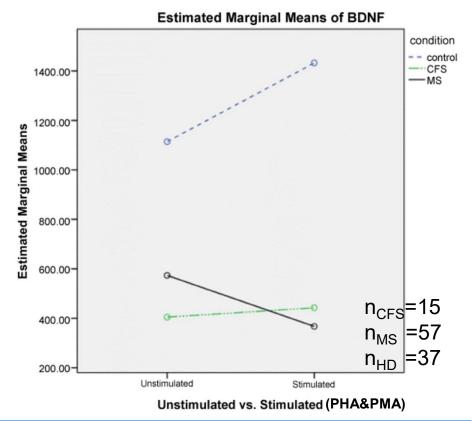

4. BDNF

Brain Derived Neurotrophic Factor is Decreased in Chronic Fatigue Syndrome and Multiple Sclerosis

Matthew Sorenson^{1*}, Leonard Jason², Jonna Peterson³, Joshua Herrington⁴, and Herbert Mathews⁵ (2014)

- decreased BDNF production in <u>PBMCs</u> of ME/CFS patients vs controls
 - supernatant of 48 h PBMC culture was analysed by ELISA

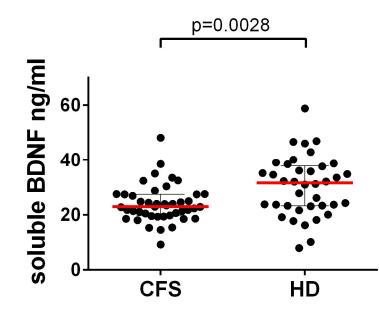
4. BDNF


Brain Derived Neurotrophic Factor is Decreased in Chronic Fatigue Syndrome and Multiple Sclerosis

Matthew Sorenson¹, Leonard Jason², Jonna Peterson³, Joshua Herrington⁴, and Herbert Mathews⁵ (2014)

decreased BDNF production in <u>PBMCs of ME/CFS patients vs</u> controls

BDNF:

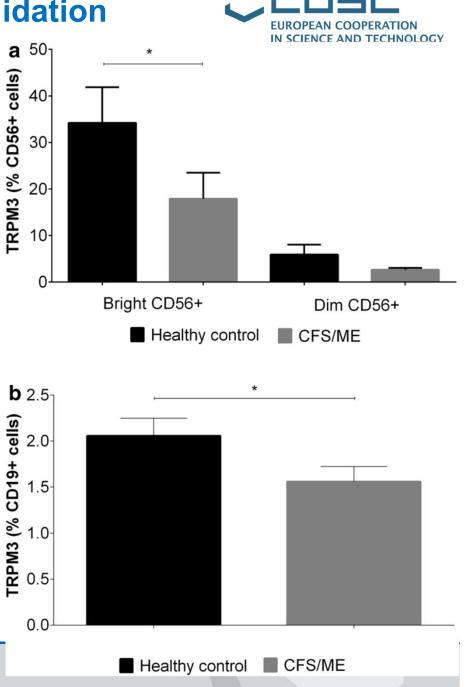

- formation of the developing nervous system
- contributes to neural plasticity through adulthood
- expressed in immune cells
- involved in the regulation of the energy homeostasis [Marosi and Mattson, 2014]

decreased serum BDNF levels in ME/CFS patients vs controls determined by ELISA (n_{CFS}=44; n_{HD}=38)

Mann-Whitney test, two-tailed

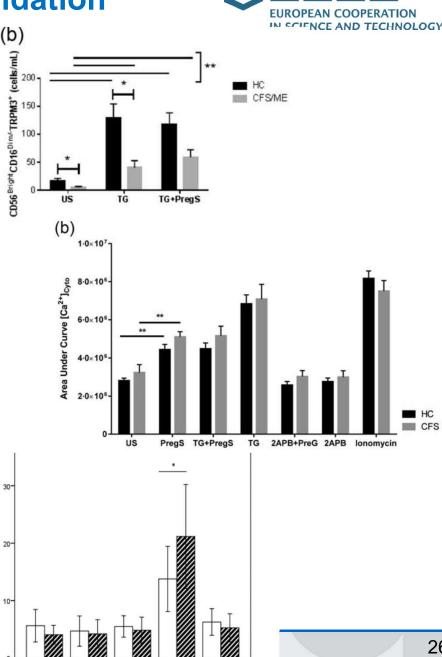
4. Biomarker Studies

Selection and validation of selected biomarkers


- potential candidates -

Dr. Franziska Sotzny

5. Candidates for biomarker validation - TRPM3 a ⁵⁰1


- T. Nguyen, D. Staines ... S. Marshall-Gradisnik; 2016
- T. Nguyen, ... D. Staines and S. Marshall-Gradisnik; 2017
- TRPM3 (transient receptor potential cation channel subfamily M member 3; calcium entry)
- significant reduction of TRPM3 surface expression on CD19+ B cells and CD56bright NK cells in CFS/ME (n = 17) compared with healthy controls (n= 19)
- 2nd study
 - confirmation of expression data
 - ➤ altered calcium signaling in NK cells of CFS/ME patients → altered downstream signaling → reduced cytotoxicity

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

- T. Nguyen, D. Staines ... S. Marshall-Gradisnik; 2016
- T. Nguyen, ... D. Staines and S. Marshall-Gradisnik; 2017
- TRPM3 (transient receptor potential cation channel subfamily M member 3; calcium entry
- significant reduction of TRPM3 surface expression on CD19+ B cells and CD56bright NK cells in CFS/ME (n = 17) compared with healthy controls (n= 19)
- 2nd study
 - confirmation of expression data
 - altered calcium signaling in NK cells of CFS/ME patients \rightarrow altered downstream signaling \rightarrow reduced cytotoxicity

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

TG+PreaS

PregS

lonomycin

2APB+PreaS

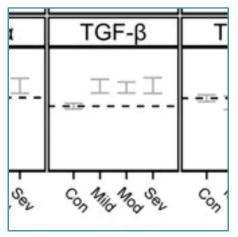
- S. Marshall-Gradisnik, T. Huth... D. Staines ; 2016
- S. Marshall-Gradisnik, S. Johnston ... D. Staines ; 2016
 - altered TRPM3 expression and/or activity may be explained by SNPs

1st study

- 678 SNPs from isolated NK cells 21 TRP ion channel genes and 9 AChR genes
- ➢ identification of 11 SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) in the ME/CFS group → 5 associated with TRPM3 [n_{CFS} = 39; n_{HD} =30]

2nd study

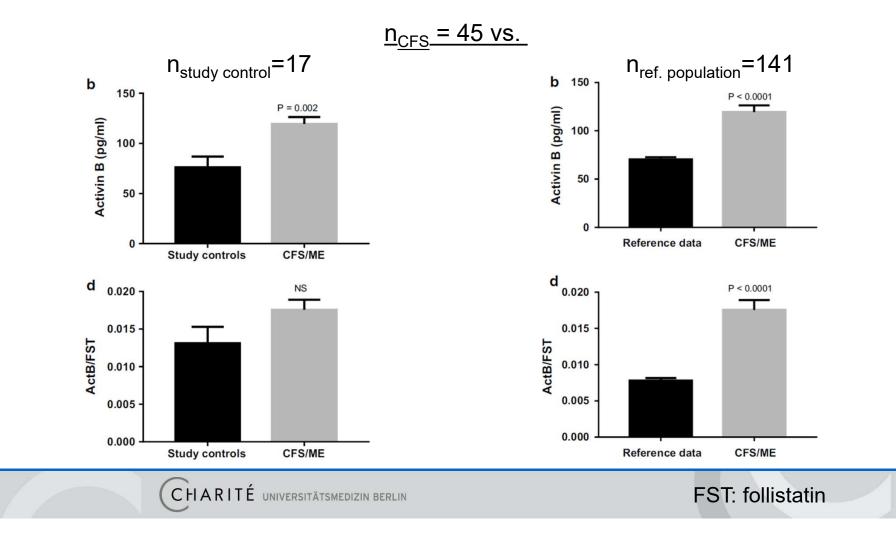
- 661 SNPs from B cells AChR and TRP variants and genotypes in B cells from CFS/ME patients
- 35 SNPs in the gene encoding mAChM3 and 4 SNPs in in the gene encoding TRPM3 [n_{CFS} = 11; n_{HD}=11]


5. Candidates for biomarker validation - immune marker: TGFβ

Blundell et al; 2015

Chronic fatigue syndrome and circulating cytokines: A systematic review

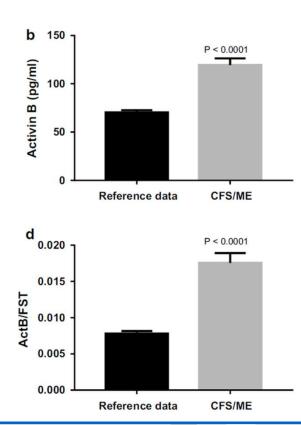
- 38 papers → cytokines in CFS/ME
- patients had significantly elevated TGF-β concentrations in 5 out of 8 (63%) studies (no other cytokines were present in abnormal concentrations in the majority of studies)


Montoya et al., 2017 n_{CFS}=192; n_{HD}=392

5. Candidates for biomarker validation - immune marker: Activin B

Lidbury et al; 2017

Activin B is a novel biomarker for chronic fatigue syndrome /myalgic encephalomyelitis (CFS/ME) diagnosis: a cross sectional study


29

5. Candidates for biomarker validation - immune marker: Activin B

Lidbury et al; 2017

Activin B is a novel biomarker for chronic fatigue syndrome /myalgic encephalomyelitis (CFS/ME) diagnosis: a cross sectional study

 serum activin B levels for CFS/ME participants were significantly elevated when compared to the controls



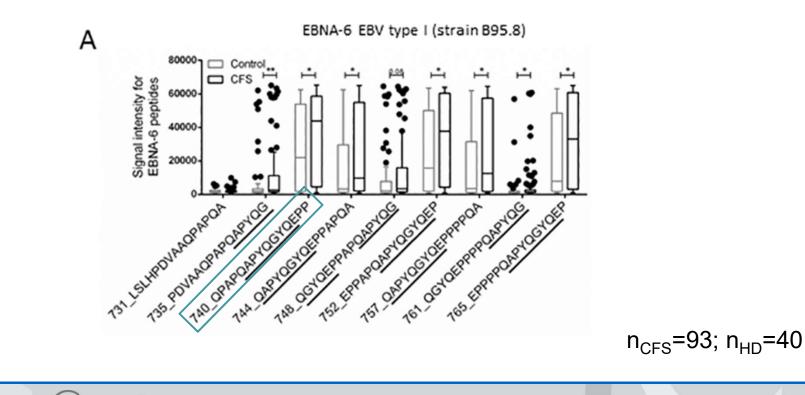
- immune marker: mast cells

Nguyen et al; 2017

Novel characterisation of mast cell phenotypes from PBMCs in CFS/ME patients

- significant increase of naïve MCs in moderate and severe CFS/ME patients (n=18) compared with healthy controls (n=13)
- significant increase in CD40 ligand and MHC-II receptors on differentiated MCs in severe CFS/ME patients

IN SCIENCE AND TECHNOLOGY

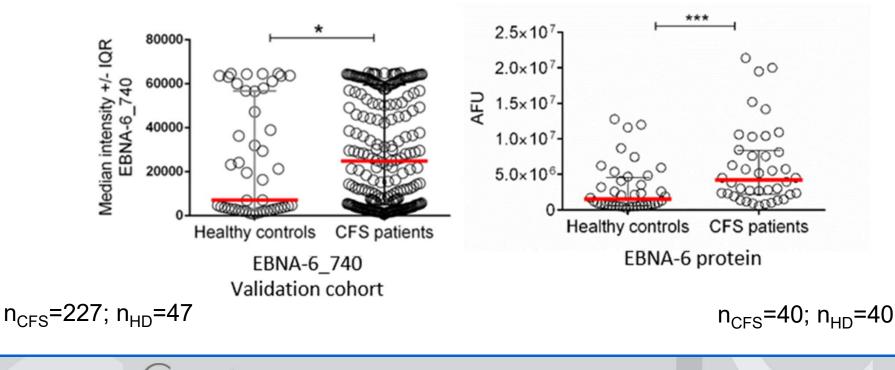


- immune marker: EBV Serology

Loebel et al; 2017

Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray

enhanced IgG reactivity against an EBNA-6 repeat sequence



- immune marker: EBV Serology

Loebel et al; 2017

Serological profiling of the EBV immune response in Chronic Fatigue Syndrome using a peptide microarray

 enhanced IgG reactivity against an EBNA-6 repeat sequence and against EBNA-6 protein is found in CFS patients

- immune marker: EBV/HHV-6 Serology

Halpin et al; 2017

ME/CFS and GWI patients exhibit increased humoral responses to the herpesviruses-encoded dUTPase: Implications in disease pathophysiology

TABLE 3 Grouping of GWI and ME/CFS patients based upon anti-HHV-6, EBV, VZV, and Human dUTPase antibodies^a

dUTPase Ab subgroup	GWI cohort; N (% of total)	ME/CFS cohort; N (% of total)	Control cohort; N (% of total)
Negative	29 (50)	25 (45.45)	87 (57.6)
HHV-6 only	12 (20.69)	12 (21.82)	20 (13.25)
EBV only	0 (0)	0 (0)	15 (9.93)
VZV only	0 (0)	0 (0)	2 (1.32)
Human only	0 (0)	1 (1.82)	1 (0.67)
HHV-6 + EBV	3 (5.20)	10 (18.18)	13 (8.60)
HHV-6 + VZV	1 (1.72)	0 (0)	2 (1.32)
HHV-6 + Human	2 (3.45)	1 (1.82)	O (O)
EBV + VZV	0 (0)	0 (0)	1 (0.67)
EBV + Human	0 (0)	^{0 (0)} 29 (52.7%)	
VZV + Human	0 (0)	_{0 (0)} 29 (32.7 /0)	<u>0 (0)</u> 45 (29.8%
HHV-6 + EBV + VZV	2 (3.45)	0 (0)	4 (2.65)
HHV-6 + EBV + Human	4 (6.90)	4 (7.27)	2 (1.32)
EBV + VZV + Human	0 (0)	0 (0)	0 (0)
HHV-6 + EBV + VZV + Human	5 (8.62)	2 (3.64)	4 (2.65)
Total	58	⁵⁵ 8 (14.5 %)	151 8 (5 %)

CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN

n_{CFS}=55; n_{HD}=151

- infection marker: HHV-6 & HHV-7 & B19

S. Chapenko, M. Murovska, 2006 & 2012

Viral infection	Plasma samples $(n = 108)$	Practically health persons (n = 90)
Active viral infection	70/108	12/90
Single HHV-6	2/108	0/90
Single HHV-7	28/108	10/90
Single B19	11/108	2/90
Dual HHV-6 + HHV-7	10/108	0/90
Dual HHV-7 + B19	15/108	0/90
Triple HHV-6 + HHV-7 + B19	4/108	0/90
Latent viral infection	32/108	53/90
Without viral infection	6/108	25/90

ME/CFS Biomarker Landscape project -

- TGFβ
- serum BAFF
- active HHV-6 & HHV-7/HHV7 & B19 infection
- TRPM3
- Activin B
- mast cells
- EBV serology: EBNA6, dUTPase
- sCD26
- BDNF

first validation data available

Acknowledgements

Medical Immunology, Charité Prof. Carmen Scheibenbogen Helma Freitag Sandra Bauer Antonia Berz Sophie Steiner Prof. Hans-Dieter Volk

CHARITÉ O Immundefekt Ambulanz für Erwachsene

PD Dr. Patricia Grabowski Dr. Leif Hanitsch Dr. Kirsten Wittke Yüksel Vural Michaela Antelmann

" thankyoufor your ATTENTION

